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Note 

The Use of the Odd-Even Hopscotch 
Algorithm for a Thermal Shock Problem 

1. INTRODUCTION 

The fast partial differential equation solver proposed by Gourlay [ 1 ] is a very 
attractive computational scheme. The implemented process is explicit, in the sense 
that systems of equations need not be solved at each stage, and unconditionally 
stable. Gourlay and McGuire [2] refer to the basic technique as “odd-even 
hopscotch.” This note is concerned with the behaviour of the odd-even hopscotch 
solution for a thermal shock problem. 

It is a common practive in the numerical solution of heat conduction problems to 
ignore discontinuities in the initial data. The error introduced is usually acceptable 
and often decays as the numerical scheme progresses. The behaviour of standard 
finite-differences techniques for problems containing discontinuities is fairly well 
understood (see [3]) and a similar appreciation has been made of finite-element 
methods (see [4]). However, the authors have observed some unusual behaviour in 
the odd-even hopscotch solution of the heat conduction equation with discontinuous 
initial data. The form of the solution obtained is dependent upon the implementation 
of the algorithm. When the initial approximation at the point adjacent to the discon- 
tinuity is implicit the subsequent solution appears smooth for all parameter values. 
However, if the initial approximation at that point is explicit a “wave-like” distur- 
bance can propagate through the solution domain, resulting in very poor accuracy. 
For the parameter range in which both implementations produce “sensible” results a 
significant discrepancy may still be observed. 

It is the purpose of this note to demonstrate this unusual behaviour for the benefit 
of those employing hopscotch techniques in the numerical solution of thermal 
problems. 

2. PROBLEM SPECIFICATION AND METHOD OF SOLUTION 

Consider the simple, non-dimensionalised, heat flow problem, 

?8 I ‘3R ‘3 I I 

au cY*u 
at- ax* ’ o<x< 1, t>o; 

u(x,O) = 0, O<x<l; (2) 

u( 1, t) = 0, t >o; (3) 
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and 
u(0, t) = 1, t 200, (4) 

where u represents temperature. The initial temperature distribution contains a jump 
discontinuity at x = 0. The equations typify the heating of a cooled, lagged rod by the 
rapid introduction of one end to a hot environment. The analytic solution of the 
problem defined by (1) to (4) is given by Carslaw and Jaeger [5]. 

The odd-even hopscotch approximation of Eq. (1) is 

(1 - re,P+ ‘6:) u;+’ = (1 + r@) u;, q = I,..., 2n - 1, p = 0, l,..., (5) 
where 

q= 1, p + q odd, 

= 0, p + q even, 

ut N u(qh, pk), h and k are the parameters of the finite-difference mesh, r = k/h*, 
2nh = 1 and 6, is the central difference operator for the space variable. The initial 
and boundary conditions become 

u;= 1, p = 0, l,..., 

u:, = 0, p = 0, l)...) (6) 

u; = 0, q = l,..., 2n - 1. 

In order to investigate the behaviour of the solution of the finite-difference 
equations, the odd-even hopscotch algorithm is considered as a two-stage, explicit 
process where 

(1+2r)u~*+*= (1 - 2r + 4r2) ui” + 2r( 1 - 2r)(utT, + uim ,) 

+ 2r*(ui: 2 + 24Y *), m = 0, l,..., (7) 

for even points q = 2i, i = 1, 2 ,..., n - 1, and 

(1 + 2r)* uim+ 2 = (1 - 8r’) ui” + 2r( 1 + 3r*)(u~T, + z&! ,) 

+ 2r*( 1 - 2r)(uiY 2 + ui’: J 

+ 2r3(uiY3 + z$f3), m = 0, l,..., (8) 

for internal, odd points q = 2i + 1, i = 1, 2 ,..., n - 2. Of the two remaining points only 
the solution at q = 1 is of direct interest as the disturbance under investigation 
emanates from the initial discontinuity. The equation corresponding to Eq. (8) for the 
point q = 1 is 

(1 + 2r)* Use+* = (1 - 2rZ - 4r3) u:” + 2r(l + 2r*) us” + 2r*( 1 - 2r) U:” 

+ 2r3u:” + 2r(l + r)*, m = 0, l,... . (9) 

The equation at q = 2n - 1 has a similar form. 
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An examination of the solution to these equations, subject to the initial and 
boundary conditions (6), after just two time steps (m = 0) illustrates the effect of the 
discontinuity. Equations (6), (7), (8) and (9) yield 

u: = 2r( 1 + r)‘/( 1 + 2r)‘, 

u: = 2rZ/( 1 + 2r), 

u$ = 2r3/( 1 + 2r)‘, 

(10) 

as the only non-zero values at time t = 2k. The propagation of non-zero values is 
illustrated in Fig. 1. For a value of r of 1.4 or more two of the predicted temperatures 
are in excess of the boundary value. When the value of r is greater than about 1.6, 
u: < ui > ui > 1 and a “wave-like” temperature profile is produced. The extent to 
which this spurious wave penetrates the solution domain depends on the size of r but 
even for modest values of r the effect upon the accuracy at later times is significant. 

In the following section the behaviour of the leading non-zero values is examined 
in detail. 

3. DIFFERENCE SOLUTION 

Consider the behaviour of the leading non-zero values, z&, , ZL$ and u:E+, , at 
even numbers of time steps. As illustrated in Fig. 1, many of the terms in (7) and (8) 
are zero for the points q = 2m and q = 2m + 1 and it is easily shown from these two 
equations that 

(11) 

- r 1 2 

u:;;;=4 ( 
1 t 2r 

U2m, 2m m = l,..., n - 2. (12) 

Using the appropriate expression given in Eq. (10) as an initial condition the above 
recurrence relation has the solution 

2r [ 1 
Zm-1 

$m - r - 
2m - lt2r ’ 

m = l,..., n - 1. 

. . 

2 4 

3 

12 

1 

m=O p=o 

q=o 1 2 3 . . . 2n 

FIG. 1. Propagation of non-zero values (x denotes non-zero value). 
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Clearly, the value u:: decays as m increases. However, suppose the finite-difference 
parameters are h = 0.1 and r = 3; then the odd-even hopscotch solution at x = 0.8 
after eight time steps is greater than the boundary value at x = 0. Even though this 
unrealistic value will decrease rapidly from that stage onwards, due to the influence 
of the zero boundary condition at x = 1, the estimates of the temperature throughout 
the entire range (0, 1) are now significantly in error. 

Consider further Eqs. (7) and (8) for the points q = 2m - 1 and q = 2m - 2. 
Again, after some algebraic manipulation, it is possible to produce a single recurrence 
relation in 24::-, . Suppressing the details, it can be shown that &, satisfies 

(1 + 2r)* u$zt = 4r*~~~~, + r m = l,..., n - 2. (13) 

Taking the value in (10) as the initial condition, the recurrence relation has the 
solution 

2m 

[ 

m-l 
Uzm-l= + 

(1 +r)* 2r 2m-1 
-- - - 2(1 m = n + 2r) (1 + 2r) I( 1+2r 1 ’ l,..., 1. 

From the above 

1 2m a+ 1 < zu*,> m = l,..., n- l,forallr, 

and 

2m 2m 
U2m > u*t?- I 

provided 

O<m<min(2r2-2r-l,n-1). 

FIG. 2. Solution development for increasing p (r = 2, n = 5). 
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Hence, for a given value of r greater than about 1.4, a “wave-like” disturbance may 
be observed propagating through the solution domain for at least 2m time steps where 

m=min([2r*-2r- l],n- 1). 

An example of this phenomenon is illustrated in Fig. 2. 
Clearly the small time behaviour described above is inconsistent with the problem 

defined in (1) to (4). 

4. ALTERNATIVE IMPLEMENTATION 

In the odd-even hoscotch approximation, Eq. (5), suppose 8: is redefined as 

e4p= I, p + q even, 

= 0, p + q odd. (14) 

The initial approximation immediately adjacent to the discontinuity is now implicit. 
The propagation of non-zero values is illustrated in Fig. 3. On comparison of Figs. 1 
and 3 it can be seen that the alternative hopscotch solution does not penetrate the 
solution domain as rapidly as that of the earlier implementation. However, the 
propagation of values described by (7), (8) and (9) still apply, but between odd- 
numbered time levels. Hence, some of the earlier results can be utilised in the 
examination of this alternative process. For instance, relations (11) and (12) remain 
valid in terms of the two leading non-zero values, vgE+’ and z$~:, where $ 
represents the solution obtained by the alternative implementation, and it is readily 
shown that 

*m+l_ 
( 

2r 2m 
V2m - 

1’ 
1 m = 0, 1 ,..., n - 1. 

Clearly 1 > uiz+’ > u$:: for all P > 0 and 0 < m < n - 1. Following the same 
procedure as that outlined in the preceding section the behaviour of uvula is 
obtained. Again suppressing detail, the solution for v2,,,- i , 2mS ’ during the early stages of 
the odd-even hopscotch process, is given by 

*mtl-- 1 2m V 
(1 + 8r+ 8r*) 

Zm-’ - - 
2 (1 + 292 + = 

(1 2?9* m 
+ 

l,..., n 1. 

A little further analysis shows that 

1 > V:;‘; > a;;+‘, forallr>Oandl<m,<n-1. 

The leading non-zero values of the solution obtained from the alternative implemen- 
tation of the odd-even hopscotch approximation do not exhibit the previously 
observed behaviour. 
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FIG. 3. 
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Alternative propagation of non-zero values (x denotes non-zero values). 

Computational evidence suggests that, like the leading values, the solution as a 
whole is monotonic and mimics the behaviour expected of the temperature. This does 
not necessarily mean that the accuracy of the solution vz is good. The initial jump 
discontinuity at x = 0 will introduce errors into both solutions. In the latter 
implementation the errors introduced do not create an obviously erroneous 
temperature distribution. 

5. REMARKS 

The above analysis illustrates the possible consequences of ignoring discontinuities 
when solving heat flow problems by numerical techniques. The odd-even hopscotch 
process seems unusually sensitive in this respect although it has been demonstrated 
how to overcome this sensitivity. The alternative implementation can be thought of as 
simply introducing a suitable starting value at the first internal mesh point and, in 
effect, smoothing out the jump discontinuity, which is a remedy that has been 
suggested in connection with other numerical techniques. It must be stressed that for 
problems with smooth initial data there is no significant difference between the 
solutions u: and vz, . 

Finally, it is worth examining the special case r = 0.5. A review of the solutions in 
the preceding two sections reveal that 

v2m+ I_ U2m 
Zm-I - Zm-15 

2rnfl 2m 
v2m =Uzmr 

and 

v2m+l _ 2m 
2mtl -U2mtl, m = l,..., n - 1. 

In particular, when m = 1 the non-zero values in both solutions are identical but out 
of phase by one time step. Since the hopscotch process in the alternative implemen- 
tation is the same between odd time levels as the original scheme between even ones, 
then 

vP+’ = UP 
9 -9 for all p > 1 and 0 ,< q < 2n. 
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The two solutions are the same but vz lags behind uz by one time step. A comparison 
of the computed values with those obtained from the analytic solution [S], at various 
stages in the process, suggests that vt is the more accurate solution. 

Hence, it appears prudent to adopt the alternative implementation (definition (14) 
for 0,“) as a matter of course when using the odd-even hopscotch technique. 

Although the foregoing analysis has been confined to the simple, one-dimensional, 
heat conduction equation it may be anticipated that the wave-like behaviour 
demonstrated in this note could occur in a hopscotch solution of a more general heat 
flow problem. For example, the “line” hopscotch solution of a two-dimensional 
thermal shock problem will exhibit similar phenomena if not implemented with care. 
The results presented here illustrate the dangers involved in the casual use of 
hopscotch techniques. 
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